Рубрика «Проверка знаний»

Решаем задачи Абрамян на Паскале. Boolean39

Boolean39. Даны координаты двух различных полей шахматной доски $$x_1$$, $$y_1$$, $$x_2$$, $$y_2$$ (целые числа, лежащие в диапазоне 1–8). Проверить истинность высказывания: «Ферзь за один ход может перейти с одного поля на другое».

Решаем задачи Абрамян на Паскале. Boolean38

Boolean38. Даны координаты двух различных полей шахматной доски $$x_1$$, $$y_1$$, $$x_2$$, $$y_2$$ (целые числа, лежащие в диапазоне 1–8). Проверить истинность высказывания: «Слон за один ход может перейти с одного поля на другое».

Решаем задачи Абрамян на Паскале. Boolean37

Boolean37. Даны координаты двух различных полей шахматной доски $$x_1$$, $$y_1$$, $$x_2$$, $$y_2$$ (целые числа, лежащие в диапазоне 1–8). Проверить истинность высказывания: «Король за один ход может перейти с одного поля на другое».

Решаем задачи Абрамян на Паскале. Boolean36

Boolean36. Даны координаты двух различных полей шахматной доски $$x_1$$, $$y_1$$, $$x_2$$, $$y_2$$ (целые числа, лежащие в диапазоне 1–8). Проверить истинность высказывания: «Ладья за один ход может перейти с одного поля на другое».

Решаем задачи Абрамян на Паскале. Boolean35

Boolean35. Даны координаты двух различных полей шахматной доски $$x_1$$, $$y_1$$, $$x_2$$, $$y_2$$ (целые числа, лежащие в диапазоне $$1-8$$). Проверить истинность высказывания: «Данные поля имеют одинаковый цвет».

Решаем задачи Абрамян на Паскале. Boolean34

Boolean34. Даны координаты поля шахматной доски $$x$$, $$y$$ (целые числа, лежащие в диапазоне 1–8). Учитывая, что левое нижнее поле доски $$(1, 1)$$ является черным, проверить истинность высказывания: «Данное поле является белым».