Решаем задачи Абрамян на C. Proc40

Proc40. Описать функцию Exp1($$x$$, $$\epsilon$$) вещественного типа (параметры $$x$$, $$\epsilon$$ — вещественные, $$\epsilon > 0$$), находящую приближенное значение функции exp($$x$$): $$exp(x) = 1 + x + x^2/(2!) + x^3/(3!) + … + x^n/(n!) + … (n! = 1*2*…*n)$$. В сумме учитывать все слагаемые, большие $$\epsilon$$. С помощью Exp1 найти приближенное значение экспоненты для данного $$x$$ …

Решаем задачи Абрамян на C. Proc39

Proc39. Используя функции Power1 и Power2 (задания Proc37 и Proc38), описать функцию Power3($$A$$, $$B$$) вещественного типа с вещественными параметрами, находящую $$A^B$$ следующим образом: если $$B$$ имеет нулевую дробную часть, то вызывается функция Power2($$A$$, Round($$B$$)); в противном случае вызывается функция Power1($$A$$, $$B$$). С помощью этой функции найти $$A^P, B^P, C^P$$, если даны числа $$P, A, B, …

Решаем задачи Абрамян на C. Proc38

Proc38. Описать функцию Power2($$A$$, $$N$$) вещественного типа, находящую величину $$A^N$$ ($$A$$ — вещественный, $$N$$ — целый параметр) по следующим формулам: $$A^0 = 1; A^N = A*A*…*A$$ ($$N$$ сомножителей), если $$N > 0$$; $$A^N = 1/(A*A*…*A) $$($$|N|$$ сомножителей), если $$N < 0$$. С помощью этой функции найти $$A^K, A^L, A^M,$$ если даны числа $$A, K, L, …

Решаем задачи Абрамян на C. Proc37

Proc37. Описать функцию Power1($$A$$, $$B$$) вещественного типа, находящую величину $$A^B$$ по формуле $$A^B = exp(B*ln(A))$$ (параметры $$A$$ и $$B$$ — вещественные). В случае нулевого или отрицательного параметра $$A$$ функция возвращает 0. С помощью этой функции найти степени $$A^P$$, $$B^P$$, $$C^P$$, если даны числа $$P, A, B, C$$.

Решаем задачи Абрамян на C. Array4

Array4. Дано целое число $$N (\gt 1)$$, а также первый член $$A$$ и знаменатель $$D$$ геометрической прогрессии. Сформировать и вывести массив размера $$N$$, содержащий $$N$$ первых членов данной прогрессии: $$A, A*D, A*D^2, A*D^3, …$$ .