Записи с меткой «C»

Решаем задачи Абрамян на C. Array3

Array3. Дано целое число $$N (\gt 1)$$, а также первый член $$A$$ и разность $$D$$ арифметической прогрессии. Сформировать и вывести массив размера $$N$$, содержащий $$N$$ первых членов данной прогрессии: $$A, A + D, A + 2*D, A + 3*D, …$$ .

Решаем задачи Абрамян на C. Proc35

Proc35. Описать функцию Fact2($$N$$) вещественного типа, вычисляющую двойной факториал: $$N!! = 1*3*5*…*N$$, если $$N$$ — нечетное; $$N!! = 2*4*6*…*N$$, если $$N$$ — четное ($$N > 0$$ — параметр целого типа; вещественное возвращаемое значение используется для того, чтобы избежать целочисленного переполнения при больших значениях $$N$$). С помощью этой функции найти двойные факториалы пяти данных целых чисел.

Решаем задачи Абрамян на C. Proc34

Proc34. Описать функцию Fact($$N$$) вещественного типа, вычисляющую значение факториала $$N! = 1*2*…*N$$ ($$N > 0$$ — параметр целого типа; вещественное возвращаемое значение используется для того, чтобы избежать целочисленного переполнения при больших значениях $$N$$). С помощью этой функции найти факториалы пяти данных целых чисел.

Решаем задачи Абрамян на C. Proc33

Proc33. Описать функцию RadToDeg($$R$$) вещественного типа, находящую величину угла в градусах, если дана его величина $$R$$ в радианах ($$R$$ — вещественное число, $$0 < R < 2*\pi$$). Воспользоваться следующим соотношением: $$180^o = \pi$$ радианов. В качестве значения ? использовать 3.14. С помощью функции RadToDeg перевести из радианов в градусы пять данных углов.

Решаем задачи Абрамян на C. Proc32

Proc32. Описать функцию DegToRad($$D$$) вещественного типа, находящую величину угла в радианах, если дана его величина $$D$$ в градусах ($$D$$ — вещественное число, $$0 < D < 360$$). Воспользоваться следующим соотношением: $$180^o = \pi$$ радианов. В качестве значения $$\pi$$ использовать 3.14. С помощью функции DegToRad перевести из градусов в радианы пять данных углов.

Решаем задачи Абрамян на C. Proc31

Proc31. Описать функцию IsPalindrom($$K$$), возвращающую True, если целый параметр $$K$$ ($$> 0$$) является палиндромом (то есть его запись читается одинаково слева направо и справа налево), и False в противном случае. С ее помощью найти количество палиндромов в наборе из 10 целых положительных чисел. При описании функции можно использовать функции DigitCount и DigitN из заданий Proc29 …